Coverage for bim2sim/elements/bps_elements.py: 50%

802 statements  

« prev     ^ index     » next       coverage.py v7.10.3, created at 2025-08-12 13:34 +0000

1"""Module contains the different classes for all HVAC elements""" 

2import inspect 

3import logging 

4import math 

5import re 

6import sys 

7from datetime import date 

8from typing import Set, List, Union 

9 

10import ifcopenshell 

11import ifcopenshell.geom 

12from OCC.Core.BRepBndLib import brepbndlib_Add 

13from OCC.Core.BRepBuilderAPI import BRepBuilderAPI_Transform 

14from OCC.Core.BRepExtrema import BRepExtrema_DistShapeShape 

15from OCC.Core.BRepGProp import brepgprop_SurfaceProperties 

16from OCC.Core.BRepLib import BRepLib_FuseEdges 

17from OCC.Core.Bnd import Bnd_Box 

18from OCC.Core.Extrema import Extrema_ExtFlag_MIN 

19from OCC.Core.GProp import GProp_GProps 

20from OCC.Core.ShapeUpgrade import ShapeUpgrade_UnifySameDomain 

21from OCC.Core.gp import gp_Trsf, gp_Vec, gp_XYZ, gp_Pnt, \ 

22 gp_Mat, gp_Quaternion 

23from ifcopenshell import guid 

24 

25from bim2sim.elements.mapping import condition, attribute 

26from bim2sim.elements.base_elements import ProductBased, RelationBased 

27from bim2sim.elements.mapping.units import ureg 

28from bim2sim.tasks.common.inner_loop_remover import remove_inner_loops 

29from bim2sim.utilities.common_functions import vector_angle, angle_equivalent 

30from bim2sim.utilities.pyocc_tools import PyOCCTools 

31from bim2sim.utilities.types import IFCDomain, BoundaryOrientation 

32 

33logger = logging.getLogger(__name__) 

34 

35 

36class BPSProduct(ProductBased): 

37 domain = 'BPS' 

38 

39 def __init__(self, *args, **kwargs): 

40 super().__init__(*args, **kwargs) 

41 self.thermal_zones = [] 

42 self.space_boundaries = [] 

43 self.storeys = [] 

44 self.material = None 

45 self.disaggregations = [] 

46 self.building = None 

47 self.site = None 

48 

49 def __repr__(self): 

50 return "<%s (guid: %s)>" % ( 

51 self.__class__.__name__, self.guid) 

52 

53 def get_bound_area(self, name) -> ureg.Quantity: 

54 """ get gross bound area (including opening areas) of the element""" 

55 return sum(sb.bound_area for sb in self.sbs_without_corresponding) 

56 

57 def get_net_bound_area(self, name) -> ureg.Quantity: 

58 """get net area (including opening areas) of the element""" 

59 return self.gross_area - self.opening_area 

60 

61 @property 

62 def is_external(self) -> bool or None: 

63 """Checks if the corresponding element has contact with external 

64 environment (e.g. ground, roof, wall)""" 

65 if hasattr(self, 'parent'): 

66 return self.parent.is_external 

67 elif hasattr(self, 'ifc'): 

68 if hasattr(self.ifc, 'ProvidesBoundaries'): 

69 if len(self.ifc.ProvidesBoundaries) > 0: 

70 ext_int = list( 

71 set([boundary.InternalOrExternalBoundary for boundary 

72 in self.ifc.ProvidesBoundaries])) 

73 if len(ext_int) == 1: 

74 if ext_int[0].lower() == 'external': 

75 return True 

76 if ext_int[0].lower() == 'internal': 

77 return False 

78 else: 

79 return ext_int 

80 return None 

81 

82 def calc_cost_group(self) -> int: 

83 """Default cost group for building elements is 300""" 

84 return 300 

85 

86 def _calc_teaser_orientation(self, name) -> Union[int, None]: 

87 """Calculate the orientation of the bps product based on SB direction. 

88 

89 For buildings elements we can use the more reliable space boundaries 

90 normal vector to calculate the orientation if the space boundaries 

91 exists. Otherwise the base calc_orientation of IFCBased will be used. 

92 

93 Returns: 

94 Orientation angle between 0 and 360. 

95 (0 : north, 90: east, 180: south, 270: west) 

96 """ 

97 true_north = self.get_true_north() 

98 if len(self.space_boundaries): 

99 new_orientation = self.group_orientation( 

100 [vector_angle(space_boundary.bound_normal.Coord()) 

101 for space_boundary in self.space_boundaries]) 

102 if new_orientation is not None: 

103 return int(angle_equivalent(new_orientation + true_north)) 

104 # return int(angle_equivalent(super().calc_orientation() + true_north)) 

105 return None 

106 

107 @staticmethod 

108 def group_orientation(orientations: list): 

109 dict_orientations = {} 

110 for orientation in orientations: 

111 rounded_orientation = round(orientation) 

112 if rounded_orientation not in dict_orientations: 

113 dict_orientations[rounded_orientation] = 0 

114 dict_orientations[rounded_orientation] += 1 

115 if len(dict_orientations): 

116 return max(dict_orientations, key=dict_orientations.get) 

117 return None 

118 

119 def _get_sbs_without_corresponding(self, name) -> list: 

120 """get a list with only not duplicated space boundaries""" 

121 sbs_without_corresponding = list(self.space_boundaries) 

122 for sb in self.space_boundaries: 

123 if sb in sbs_without_corresponding: 

124 if sb.related_bound and sb.related_bound in \ 

125 sbs_without_corresponding: 

126 sbs_without_corresponding.remove(sb.related_bound) 

127 return sbs_without_corresponding 

128 

129 def _get_opening_area(self, name): 

130 """get sum of opening areas of the element""" 

131 return sum(sb.opening_area for sb in self.sbs_without_corresponding) 

132 

133 teaser_orientation = attribute.Attribute( 

134 description="Orientation of element in TEASER conventions. 0-360 for " 

135 "orientation of vertical elements and -1 for roofs and " 

136 "ceiling, -2 for groundfloors and floors.", 

137 functions=[_calc_teaser_orientation], 

138 ) 

139 

140 gross_area = attribute.Attribute( 

141 functions=[get_bound_area], 

142 unit=ureg.meter ** 2 

143 ) 

144 

145 net_area = attribute.Attribute( 

146 functions=[get_net_bound_area], 

147 unit=ureg.meter ** 2 

148 ) 

149 

150 sbs_without_corresponding = attribute.Attribute( 

151 description="A list with only not duplicated space boundaries", 

152 functions=[_get_sbs_without_corresponding] 

153 ) 

154 

155 opening_area = attribute.Attribute( 

156 description="Sum of opening areas of the element", 

157 functions=[_get_opening_area] 

158 ) 

159 

160 

161class ThermalZone(BPSProduct): 

162 ifc_types = { 

163 "IfcSpace": 

164 ['*', 'SPACE', 'PARKING', 'GFA', 'INTERNAL', 'EXTERNAL'] 

165 } 

166 

167 pattern_ifc_type = [ 

168 re.compile('Space', flags=re.IGNORECASE), 

169 re.compile('Zone', flags=re.IGNORECASE) 

170 ] 

171 

172 def __init__(self, *args, **kwargs): 

173 self.bound_elements = kwargs.pop('bound_elements', []) 

174 super().__init__(*args, **kwargs) 

175 

176 @property 

177 def outer_walls(self) -> list: 

178 """List of all outer wall elements bounded to the thermal zone""" 

179 return [ 

180 ele for ele in self.bound_elements if isinstance(ele, OuterWall)] 

181 

182 @property 

183 def windows(self) -> list: 

184 """List of all window elements bounded to the thermal zone""" 

185 return [ele for ele in self.bound_elements if isinstance(ele, Window)] 

186 

187 @property 

188 def is_external(self) -> bool: 

189 """determines if a thermal zone is external or internal based on the 

190 presence of outer walls""" 

191 return len(self.outer_walls) > 0 

192 

193 def _get_external_orientation(self, name) -> str or float: 

194 """determines the orientation of the thermal zone based on its elements 

195 it can be a corner (list of 2 angles) or an edge (1 angle)""" 

196 if self.is_external is True: 

197 orientations = [ele.teaser_orientation for ele in self.outer_walls] 

198 calc_temp = list(set(orientations)) 

199 sum_or = sum(calc_temp) 

200 if 0 in calc_temp: 

201 if sum_or > 180: 

202 sum_or += 360 

203 return sum_or / len(calc_temp) 

204 return 'Internal' 

205 

206 def _get_glass_percentage(self, name) -> float or ureg.Quantity: 

207 """determines the glass area/facade area ratio for all the windows in 

208 the space in one of the 4 following ranges 

209 0%-30%: 15 

210 30%-50%: 40 

211 50%-70%: 60 

212 70%-100%: 85""" 

213 glass_area = sum(wi.gross_area for wi in self.windows) 

214 facade_area = sum(wa.gross_area for wa in self.outer_walls) 

215 if facade_area > 0: 

216 return 100 * (glass_area / (facade_area + glass_area)).m 

217 else: 

218 return 'Internal' 

219 

220 def _get_space_neighbors(self, name) -> list: 

221 """determines the neighbors of the thermal zone""" 

222 neighbors = [] 

223 for sb in self.space_boundaries: 

224 if sb.related_bound is not None: 

225 tz = sb.related_bound.bound_thermal_zone 

226 # todo: check if computation of neighbors works as expected 

227 # what if boundary has no related bound but still has a 

228 # neighbor? 

229 # hint: neighbors != related bounds 

230 if (tz is not self) and (tz not in neighbors): 

231 neighbors.append(tz) 

232 return neighbors 

233 

234 def _get_space_shape(self, name): 

235 """returns topods shape of the IfcSpace""" 

236 settings = ifcopenshell.geom.main.settings() 

237 settings.set(settings.USE_PYTHON_OPENCASCADE, True) 

238 settings.set(settings.USE_WORLD_COORDS, True) 

239 settings.set(settings.EXCLUDE_SOLIDS_AND_SURFACES, False) 

240 settings.set(settings.INCLUDE_CURVES, True) 

241 return ifcopenshell.geom.create_shape(settings, self.ifc).geometry 

242 

243 def _get_space_center(self, name) -> float: 

244 """ 

245 This function returns the center of the bounding box of an ifc space 

246 shape 

247 :return: center of space bounding box (gp_Pnt) 

248 """ 

249 bbox = Bnd_Box() 

250 brepbndlib_Add(self.space_shape, bbox) 

251 bbox_center = ifcopenshell.geom.utils.get_bounding_box_center(bbox) 

252 return bbox_center 

253 

254 def _get_footprint_shape(self, name): 

255 """ 

256 This function returns the footprint of a space shape. This can be 

257 used e.g., to visualize floor plans. 

258 """ 

259 footprint = PyOCCTools.get_footprint_of_shape(self.space_shape) 

260 return footprint 

261 

262 def _get_space_shape_volume(self, name): 

263 """ 

264 This function returns the volume of a space shape 

265 """ 

266 return PyOCCTools.get_shape_volume(self.space_shape) 

267 

268 def _get_volume_geometric(self, name): 

269 """ 

270 This function returns the volume of a space geometrically 

271 """ 

272 return self.gross_area * self.height 

273 

274 def _get_usage(self, name): 

275 """ 

276 This function returns the usage of a space 

277 """ 

278 if self.zone_name is not None: 

279 usage = self.zone_name 

280 elif self.ifc.LongName is not None and \ 

281 "oldSpaceGuids_" not in self.ifc.LongName: 

282 # todo oldSpaceGuids_ is hardcode for erics tool 

283 usage = self.ifc.LongName 

284 else: 

285 usage = self.name 

286 return usage 

287 

288 def _get_name(self, name): 

289 """ 

290 This function returns the name of a space 

291 """ 

292 if self.zone_name: 

293 space_name = self.zone_name 

294 else: 

295 space_name = self.ifc.Name 

296 return space_name 

297 

298 def get_bound_floor_area(self, name): 

299 """Get bound floor area of zone. This is currently set by sum of all 

300 horizontal gross area and take half of it due to issues with 

301 TOP BOTTOM""" 

302 leveled_areas = {} 

303 for height, sbs in self.horizontal_sbs.items(): 

304 if height not in leveled_areas: 

305 leveled_areas[height] = 0 

306 leveled_areas[height] += sum([sb.bound_area for sb in sbs]) 

307 

308 return sum(leveled_areas.values()) / 2 

309 

310 def get_net_bound_floor_area(self, name): 

311 """Get net bound floor area of zone. This is currently set by sum of all 

312 horizontal net area and take half of it due to issues with TOP BOTTOM.""" 

313 leveled_areas = {} 

314 for height, sbs in self.horizontal_sbs.items(): 

315 if height not in leveled_areas: 

316 leveled_areas[height] = 0 

317 leveled_areas[height] += sum([sb.net_bound_area for sb in sbs]) 

318 

319 return sum(leveled_areas.values()) / 2 

320 

321 def _get_horizontal_sbs(self, name): 

322 """get all horizonal SBs in a zone and convert them into a dict with 

323 key z-height in room and the SB as value.""" 

324 # todo: use only bottom when TOP bottom is working correctly 

325 valid = [BoundaryOrientation.top, BoundaryOrientation.bottom] 

326 leveled_sbs = {} 

327 for sb in self.sbs_without_corresponding: 

328 if sb.top_bottom in valid: 

329 pos = round(sb.position[2], 1) 

330 if pos not in leveled_sbs: 

331 leveled_sbs[pos] = [] 

332 leveled_sbs[pos].append(sb) 

333 

334 return leveled_sbs 

335 

336 def _area_specific_post_processing(self, value): 

337 return value / self.net_area 

338 

339 def _get_heating_profile(self, name) -> list: 

340 """returns a heating profile using the heat temperature in the IFC""" 

341 # todo make this "dynamic" with a night set back 

342 if self.t_set_heat is not None: 

343 return [self.t_set_heat.to(ureg.kelvin).m] * 24 

344 

345 def _get_cooling_profile(self, name) -> list: 

346 """returns a cooling profile using the cool temperature in the IFC""" 

347 # todo make this "dynamic" with a night set back 

348 if self.t_set_cool is not None: 

349 return [self.t_set_cool.to(ureg.kelvin).m] * 24 

350 

351 def _get_persons(self, name): 

352 if self.area_per_occupant: 

353 return 1 / self.area_per_occupant 

354 

355 external_orientation = attribute.Attribute( 

356 description="Orientation of the thermal zone, either 'Internal' or a " 

357 "list of 2 angles or a single angle as value between 0 and " 

358 "360.", 

359 functions=[_get_external_orientation] 

360 ) 

361 

362 glass_percentage = attribute.Attribute( 

363 description="Determines the glass area/facade area ratio for all the " 

364 "windows in the space in one of the 4 following ranges:" 

365 " 0%-30%: 15, 30%-50%: 40, 50%-70%: 60, 70%-100%: 85.", 

366 functions=[_get_glass_percentage] 

367 ) 

368 

369 space_neighbors = attribute.Attribute( 

370 description="Determines the neighbors of the thermal zone.", 

371 functions=[_get_space_neighbors] 

372 ) 

373 

374 space_shape = attribute.Attribute( 

375 description="Returns topods shape of the IfcSpace.", 

376 functions=[_get_space_shape] 

377 ) 

378 

379 space_center = attribute.Attribute( 

380 description="Returns the center of the bounding box of an ifc space " 

381 "shape.", 

382 functions=[_get_space_center] 

383 ) 

384 

385 footprint_shape = attribute.Attribute( 

386 description="Returns the footprint of a space shape, which can be " 

387 "used e.g., to visualize floor plans.", 

388 functions=[_get_footprint_shape] 

389 ) 

390 

391 horizontal_sbs = attribute.Attribute( 

392 description="All horizontal space boundaries in a zone as dict. Key is" 

393 " the z-zeight in the room and value the SB.", 

394 functions=[_get_horizontal_sbs] 

395 ) 

396 

397 zone_name = attribute.Attribute( 

398 default_ps=("Pset_SpaceCommon", "Reference") 

399 ) 

400 

401 name = attribute.Attribute( 

402 functions=[_get_name] 

403 ) 

404 

405 usage = attribute.Attribute( 

406 default_ps=("Pset_SpaceOccupancyRequirements", "OccupancyType"), 

407 functions=[_get_usage] 

408 ) 

409 

410 t_set_heat = attribute.Attribute( 

411 default_ps=("Pset_SpaceThermalRequirements", "SpaceTemperatureMin"), 

412 unit=ureg.degC, 

413 ) 

414 

415 t_set_cool = attribute.Attribute( 

416 default_ps=("Pset_SpaceThermalRequirements", "SpaceTemperatureMax"), 

417 unit=ureg.degC, 

418 ) 

419 

420 t_ground = attribute.Attribute( 

421 unit=ureg.degC, 

422 default=13, 

423 ) 

424 

425 max_humidity = attribute.Attribute( 

426 default_ps=("Pset_SpaceThermalRequirements", "SpaceHumidityMax"), 

427 unit=ureg.dimensionless, 

428 ) 

429 

430 min_humidity = attribute.Attribute( 

431 default_ps=("Pset_SpaceThermalRequirements", "SpaceHumidityMin"), 

432 unit=ureg.dimensionless, 

433 ) 

434 

435 natural_ventilation = attribute.Attribute( 

436 default_ps=("Pset_SpaceThermalRequirements", "NaturalVentilation"), 

437 ) 

438 

439 natural_ventilation_rate = attribute.Attribute( 

440 default_ps=("Pset_SpaceThermalRequirements", "NaturalVentilationRate"), 

441 unit=1 / ureg.hour, 

442 ) 

443 

444 mechanical_ventilation_rate = attribute.Attribute( 

445 default_ps=("Pset_SpaceThermalRequirements", 

446 "MechanicalVentilationRate"), 

447 unit=1 / ureg.hour, 

448 ) 

449 

450 with_ahu = attribute.Attribute( 

451 default_ps=("Pset_SpaceThermalRequirements", "AirConditioning"), 

452 ) 

453 

454 central_ahu = attribute.Attribute( 

455 default_ps=("Pset_SpaceThermalRequirements", "AirConditioningCentral"), 

456 ) 

457 

458 gross_area = attribute.Attribute( 

459 default_ps=("Qto_SpaceBaseQuantities", "GrossFloorArea"), 

460 functions=[get_bound_floor_area], 

461 unit=ureg.meter ** 2 

462 ) 

463 

464 net_area = attribute.Attribute( 

465 default_ps=("Qto_SpaceBaseQuantities", "NetFloorArea"), 

466 functions=[get_net_bound_floor_area], 

467 unit=ureg.meter ** 2 

468 ) 

469 

470 net_wall_area = attribute.Attribute( 

471 default_ps=("Qto_SpaceBaseQuantities", "NetWallArea"), 

472 unit=ureg.meter ** 2 

473 ) 

474 

475 net_ceiling_area = attribute.Attribute( 

476 default_ps=("Qto_SpaceBaseQuantities", "NetCeilingArea"), 

477 unit=ureg.meter ** 2 

478 ) 

479 

480 net_volume = attribute.Attribute( 

481 default_ps=("Qto_SpaceBaseQuantities", "NetVolume"), 

482 functions=[_get_space_shape_volume, _get_volume_geometric], 

483 unit=ureg.meter ** 3, 

484 ) 

485 gross_volume = attribute.Attribute( 

486 default_ps=("Qto_SpaceBaseQuantities", "GrossVolume"), 

487 functions=[_get_volume_geometric], 

488 unit=ureg.meter ** 3, 

489 ) 

490 

491 height = attribute.Attribute( 

492 default_ps=("Qto_SpaceBaseQuantities", "Height"), 

493 unit=ureg.meter, 

494 ) 

495 

496 length = attribute.Attribute( 

497 default_ps=("Qto_SpaceBaseQuantities", "Length"), 

498 unit=ureg.meter, 

499 ) 

500 

501 width = attribute.Attribute( 

502 default_ps=("Qto_SpaceBaseQuantities", "Width"), 

503 unit=ureg.m 

504 ) 

505 

506 area_per_occupant = attribute.Attribute( 

507 default_ps=("Pset_SpaceOccupancyRequirements", "AreaPerOccupant"), 

508 unit=ureg.meter ** 2 

509 ) 

510 

511 space_shape_volume = attribute.Attribute( 

512 functions=[_get_space_shape_volume], 

513 unit=ureg.meter ** 3, 

514 ) 

515 

516 clothing_persons = attribute.Attribute( 

517 default_ps=("", "") 

518 ) 

519 

520 surround_clo_persons = attribute.Attribute( 

521 default_ps=("", "") 

522 ) 

523 

524 heating_profile = attribute.Attribute( 

525 functions=[_get_heating_profile], 

526 ) 

527 

528 cooling_profile = attribute.Attribute( 

529 functions=[_get_cooling_profile], 

530 ) 

531 

532 persons = attribute.Attribute( 

533 functions=[_get_persons], 

534 ) 

535 

536 # use conditions 

537 with_cooling = attribute.Attribute( 

538 ) 

539 

540 with_heating = attribute.Attribute( 

541 ) 

542 

543 T_threshold_heating = attribute.Attribute( 

544 ) 

545 

546 activity_degree_persons = attribute.Attribute( 

547 ) 

548 

549 fixed_heat_flow_rate_persons = attribute.Attribute( 

550 default_ps=("Pset_SpaceThermalLoad", "People"), 

551 unit=ureg.W, 

552 ) 

553 

554 internal_gains_moisture_no_people = attribute.Attribute( 

555 ) 

556 

557 T_threshold_cooling = attribute.Attribute( 

558 ) 

559 

560 ratio_conv_rad_persons = attribute.Attribute( 

561 default=0.5, 

562 ) 

563 

564 ratio_conv_rad_machines = attribute.Attribute( 

565 default=0.5, 

566 ) 

567 

568 ratio_conv_rad_lighting = attribute.Attribute( 

569 default=0.5, 

570 ) 

571 

572 machines = attribute.Attribute( 

573 description="Specific internal gains through machines, if taken from" 

574 " IFC property set a division by thermal zone area is" 

575 " needed.", 

576 default_ps=("Pset_SpaceThermalLoad", "EquipmentSensible"), 

577 ifc_postprocessing=_area_specific_post_processing, 

578 unit=ureg.W / (ureg.meter ** 2), 

579 ) 

580 

581 def _calc_lighting_power(self, name) -> float: 

582 if self.use_maintained_illuminance: 

583 return self.maintained_illuminance / self.lighting_efficiency_lumen 

584 else: 

585 return self.fixed_lighting_power 

586 

587 lighting_power = attribute.Attribute( 

588 description="Specific lighting power in W/m2. If taken from IFC" 

589 " property set a division by thermal zone area is needed.", 

590 default_ps=("Pset_SpaceThermalLoad", "Lighting"), 

591 ifc_postprocessing=_area_specific_post_processing, 

592 functions=[_calc_lighting_power], 

593 unit=ureg.W / (ureg.meter ** 2), 

594 ) 

595 

596 fixed_lighting_power = attribute.Attribute( 

597 description="Specific fixed electrical power for lighting in W/m2. " 

598 "This value is taken from SIA 2024.", 

599 unit=ureg.W / (ureg.meter ** 2) 

600 ) 

601 

602 maintained_illuminance = attribute.Attribute( 

603 description="Maintained illuminance value for lighting. This value is" 

604 " taken from SIA 2024.", 

605 unit=ureg.lumen / (ureg.meter ** 2) 

606 ) 

607 

608 use_maintained_illuminance = attribute.Attribute( 

609 description="Decision variable to determine if lighting_power will" 

610 " be given by fixed_lighting_power or by calculation " 

611 "using the variables maintained_illuminance and " 

612 "lighting_efficiency_lumen. This is not available in IFC " 

613 "and can be set through the sim_setting with equivalent " 

614 "name. " 

615 ) 

616 

617 lighting_efficiency_lumen = attribute.Attribute( 

618 description="Lighting efficiency in lm/W_el, in german: Lichtausbeute.", 

619 unit=ureg.lumen / ureg.W 

620 ) 

621 

622 use_constant_infiltration = attribute.Attribute( 

623 ) 

624 

625 base_infiltration = attribute.Attribute( 

626 ) 

627 

628 max_user_infiltration = attribute.Attribute( 

629 ) 

630 

631 max_overheating_infiltration = attribute.Attribute( 

632 ) 

633 

634 max_summer_infiltration = attribute.Attribute( 

635 ) 

636 

637 winter_reduction_infiltration = attribute.Attribute( 

638 ) 

639 

640 min_ahu = attribute.Attribute( 

641 ) 

642 

643 max_ahu = attribute.Attribute( 

644 default_ps=("Pset_AirSideSystemInformation", "TotalAirflow"), 

645 unit=ureg.meter ** 3 / ureg.s 

646 ) 

647 

648 with_ideal_thresholds = attribute.Attribute( 

649 ) 

650 

651 persons_profile = attribute.Attribute( 

652 ) 

653 

654 machines_profile = attribute.Attribute( 

655 ) 

656 

657 lighting_profile = attribute.Attribute( 

658 ) 

659 

660 def get__elements_by_type(self, type): 

661 raise NotImplementedError 

662 

663 def __repr__(self): 

664 return "<%s (usage: %s)>" \ 

665 % (self.__class__.__name__, self.usage) 

666 

667class ExternalSpatialElement(ThermalZone): 

668 ifc_types = { 

669 "IfcExternalSpatialElement": 

670 ['*'] 

671 } 

672 

673 

674class SpaceBoundary(RelationBased): 

675 ifc_types = {'IfcRelSpaceBoundary': ['*']} 

676 

677 def __init__(self, *args, elements: dict, **kwargs): 

678 """spaceboundary __init__ function""" 

679 super().__init__(*args, **kwargs) 

680 self.disaggregation = [] 

681 self.bound_element = None 

682 self.disagg_parent = None 

683 self.bound_thermal_zone = None 

684 self._elements = elements 

685 self.parent_bound = None 

686 self.opening_bounds = [] 

687 

688 def _calc_position(self, name): 

689 """ 

690 calculates the position of the spaceboundary, using the relative 

691 position of resultant disaggregation 

692 """ 

693 if hasattr(self.ifc.ConnectionGeometry.SurfaceOnRelatingElement, 

694 'BasisSurface'): 

695 position = self.ifc.ConnectionGeometry.SurfaceOnRelatingElement. \ 

696 BasisSurface.Position.Location.Coordinates 

697 else: 

698 position = self.ifc.ConnectionGeometry.SurfaceOnRelatingElement. \ 

699 Position.Location.Coordinates 

700 

701 return position 

702 

703 @classmethod 

704 def pre_validate(cls, ifc) -> bool: 

705 return True 

706 

707 def validate_creation(self) -> bool: 

708 if self.bound_area and self.bound_area < 1e-2 * ureg.meter ** 2: 

709 return True 

710 return False 

711 

712 def get_bound_area(self, name) -> ureg.Quantity: 

713 """compute area of a space boundary""" 

714 bound_prop = GProp_GProps() 

715 brepgprop_SurfaceProperties(self.bound_shape, bound_prop) 

716 area = bound_prop.Mass() 

717 return area * ureg.meter ** 2 

718 

719 bound_area = attribute.Attribute( 

720 description="The area bound by the space boundary.", 

721 unit=ureg.meter ** 2, 

722 functions=[get_bound_area] 

723 ) 

724 

725 def _get_top_bottom(self, name) -> BoundaryOrientation: 

726 """ 

727 Determines if a boundary is a top (ceiling/roof) or bottom (floor/slab) 

728 element based solely on its normal vector orientation. 

729 

730 Classification is based on the dot product between the boundary's 

731 normal vector and the vertical vector (0, 0, 1): 

732 - TOP: when normal points upward (dot product > cos(89°)) 

733 - BOTTOM: when normal points downward (dot product < cos(91°)) 

734 - VERTICAL: when normal is perpendicular to vertical (dot product ≈ 0) 

735 

736 Returns: 

737 BoundaryOrientation: Enumerated orientation classification 

738 """ 

739 vertical_vector = gp_XYZ(0.0, 0.0, 1.0) 

740 cos_angle_top = math.cos(math.radians(89)) 

741 cos_angle_bottom = math.cos(math.radians(91)) 

742 

743 normal_dot_vertical = vertical_vector.Dot(self.bound_normal) 

744 

745 # Classify based on dot product 

746 if normal_dot_vertical > cos_angle_top: 

747 return BoundaryOrientation.top 

748 elif normal_dot_vertical < cos_angle_bottom: 

749 return BoundaryOrientation.bottom 

750 

751 return BoundaryOrientation.vertical 

752 

753 def _get_bound_center(self, name): 

754 """ compute center of the bounding box of a space boundary""" 

755 p = GProp_GProps() 

756 brepgprop_SurfaceProperties(self.bound_shape, p) 

757 return p.CentreOfMass().XYZ() 

758 

759 def _get_related_bound(self, name): 

760 """ 

761 Get corresponding space boundary in another space, 

762 ensuring that corresponding space boundaries have a matching number of 

763 vertices. 

764 """ 

765 if hasattr(self.ifc, 'CorrespondingBoundary') and \ 

766 self.ifc.CorrespondingBoundary is not None: 

767 corr_bound = self._elements.get( 

768 self.ifc.CorrespondingBoundary.GlobalId) 

769 if corr_bound: 

770 nb_vert_this = PyOCCTools.get_number_of_vertices( 

771 self.bound_shape) 

772 nb_vert_other = PyOCCTools.get_number_of_vertices( 

773 corr_bound.bound_shape) 

774 # if not nb_vert_this == nb_vert_other: 

775 # print("NO VERT MATCH!:", nb_vert_this, nb_vert_other) 

776 if nb_vert_this == nb_vert_other: 

777 return corr_bound 

778 else: 

779 # deal with a mismatch of vertices, due to different 

780 # triangulation or for other reasons. Only applicable for 

781 # small differences in the bound area between the 

782 # corresponding surfaces 

783 if abs(self.bound_area.m - corr_bound.bound_area.m) < 0.01: 

784 # get points of the current space boundary 

785 p = PyOCCTools.get_points_of_face(self.bound_shape) 

786 # reverse the points and create a new face. Points 

787 # have to be reverted, otherwise it would result in an 

788 # incorrectly oriented surface normal 

789 p.reverse() 

790 new_corr_shape = PyOCCTools.make_faces_from_pnts(p) 

791 # move the new shape of the corresponding boundary to 

792 # the original position of the corresponding boundary 

793 new_moved_corr_shape = ( 

794 PyOCCTools.move_bounds_to_vertical_pos([ 

795 new_corr_shape], corr_bound.bound_shape))[0] 

796 # assign the new shape to the original shape and 

797 # return the new corresponding boundary 

798 corr_bound.bound_shape = new_moved_corr_shape 

799 return corr_bound 

800 if self.bound_element is None: 

801 # return None 

802 # check for virtual bounds 

803 if not self.physical: 

804 corr_bound = None 

805 # cover virtual space boundaries without related IfcVirtualElement 

806 if not self.ifc.RelatedBuildingElement: 

807 vbs = [b for b in self._elements.values() if 

808 isinstance(b, SpaceBoundary) and not 

809 b.ifc.RelatedBuildingElement] 

810 for b in vbs: 

811 if b is self: 

812 continue 

813 if b.ifc.RelatingSpace == self.ifc.RelatingSpace: 

814 continue 

815 if not (b.bound_area.m - self.bound_area.m) ** 2 < 1e-2: 

816 continue 

817 center_dist = gp_Pnt(self.bound_center).Distance( 

818 gp_Pnt(b.bound_center)) ** 2 

819 if center_dist > 0.5: 

820 continue 

821 corr_bound = b 

822 return corr_bound 

823 return None 

824 # cover virtual space boundaries related to an IfcVirtualElement 

825 if self.ifc.RelatedBuildingElement.is_a('IfcVirtualElement'): 

826 if len(self.ifc.RelatedBuildingElement.ProvidesBoundaries) == 2: 

827 for bound in self.ifc.RelatedBuildingElement.ProvidesBoundaries: 

828 if bound.GlobalId != self.ifc.GlobalId: 

829 corr_bound = self._elements[bound.GlobalId] 

830 return corr_bound 

831 elif len(self.bound_element.space_boundaries) == 1: 

832 return None 

833 elif len(self.bound_element.space_boundaries) >= 2: 

834 own_space_id = self.bound_thermal_zone.ifc.GlobalId 

835 min_dist = 1000 

836 corr_bound = None 

837 for bound in self.bound_element.space_boundaries: 

838 if bound.level_description != "2a": 

839 continue 

840 if bound is self: 

841 continue 

842 # if bound.bound_normal.Dot(self.bound_normal) != -1: 

843 # continue 

844 other_area = bound.bound_area 

845 if (other_area.m - self.bound_area.m) ** 2 > 1e-1: 

846 continue 

847 center_dist = gp_Pnt(self.bound_center).Distance( 

848 gp_Pnt(bound.bound_center)) ** 2 

849 if abs(center_dist) > 0.5: 

850 continue 

851 distance = BRepExtrema_DistShapeShape( 

852 bound.bound_shape, 

853 self.bound_shape, 

854 Extrema_ExtFlag_MIN 

855 ).Value() 

856 if distance > min_dist: 

857 continue 

858 min_dist = abs(center_dist) 

859 # self.check_for_vertex_duplicates(bound) 

860 nb_vert_this = PyOCCTools.get_number_of_vertices( 

861 self.bound_shape) 

862 nb_vert_other = PyOCCTools.get_number_of_vertices( 

863 bound.bound_shape) 

864 # if not nb_vert_this == nb_vert_other: 

865 # print("NO VERT MATCH!:", nb_vert_this, nb_vert_other) 

866 if nb_vert_this == nb_vert_other: 

867 corr_bound = bound 

868 return corr_bound 

869 else: 

870 return None 

871 

872 def _get_related_adb_bound(self, name): 

873 adb_bound = None 

874 if self.bound_element is None: 

875 return None 

876 # check for visual bounds 

877 if not self.physical: 

878 return None 

879 if self.related_bound: 

880 if self.bound_thermal_zone == self.related_bound.bound_thermal_zone: 

881 adb_bound = self.related_bound 

882 return adb_bound 

883 for bound in self.bound_element.space_boundaries: 

884 if bound == self: 

885 continue 

886 if not bound.bound_thermal_zone == self.bound_thermal_zone: 

887 continue 

888 if abs(bound.bound_area.m - self.bound_area.m) > 1e-3: 

889 continue 

890 if all([abs(i) < 1e-3 for i in 

891 ((self.bound_normal - bound.bound_normal).Coord())]): 

892 continue 

893 if gp_Pnt(bound.bound_center).Distance( 

894 gp_Pnt(self.bound_center)) < 0.4: 

895 adb_bound = bound 

896 return adb_bound 

897 

898 related_adb_bound = attribute.Attribute( 

899 description="Related adiabatic boundary.", 

900 functions=[_get_related_adb_bound] 

901 ) 

902 

903 def _get_is_physical(self, name) -> bool: 

904 """ 

905 This function returns True if the spaceboundary is physical 

906 """ 

907 return self.ifc.PhysicalOrVirtualBoundary.lower() == 'physical' 

908 

909 def _get_bound_shape(self, name): 

910 settings = ifcopenshell.geom.settings() 

911 settings.set(settings.USE_PYTHON_OPENCASCADE, True) 

912 settings.set(settings.USE_WORLD_COORDS, True) 

913 settings.set(settings.EXCLUDE_SOLIDS_AND_SURFACES, False) 

914 settings.set(settings.INCLUDE_CURVES, True) 

915 

916 # check if the space boundary shapes need a unit conversion (i.e., 

917 # an additional transformation to the correct size and position) 

918 length_unit = self.ifc_units.get('IfcLengthMeasure'.lower()) 

919 conv_required = length_unit != ureg.meter 

920 

921 try: 

922 sore = self.ifc.ConnectionGeometry.SurfaceOnRelatingElement 

923 # if sore.get_info()["InnerBoundaries"] is None: 

924 shape = ifcopenshell.geom.create_shape(settings, sore) 

925 

926 if sore.InnerBoundaries: 

927 # shape = remove_inner_loops(shape) # todo: return None if not horizontal shape 

928 # if not shape: 

929 if self.bound_element.ifc.is_a( 

930 'IfcWall'): # todo: remove this hotfix (generalize) 

931 ifc_new = ifcopenshell.file() 

932 temp_sore = ifc_new.create_entity('IfcCurveBoundedPlane', 

933 OuterBoundary=sore.OuterBoundary, 

934 BasisSurface=sore.BasisSurface) 

935 temp_sore.InnerBoundaries = () 

936 shape = ifcopenshell.geom.create_shape(settings, temp_sore) 

937 else: 

938 shape = remove_inner_loops(shape) 

939 if not (sore.InnerBoundaries and not self.bound_element.ifc.is_a( 

940 'IfcWall')): 

941 faces = PyOCCTools.get_faces_from_shape(shape) 

942 if len(faces) > 1: 

943 unify = ShapeUpgrade_UnifySameDomain() 

944 unify.Initialize(shape) 

945 unify.Build() 

946 shape = unify.Shape() 

947 faces = PyOCCTools.get_faces_from_shape(shape) 

948 face = faces[0] 

949 face = PyOCCTools.remove_coincident_and_collinear_points_from_face( 

950 face) 

951 shape = face 

952 except: 

953 try: 

954 sore = self.ifc.ConnectionGeometry.SurfaceOnRelatingElement 

955 ifc_new = ifcopenshell.file() 

956 temp_sore = ifc_new.create_entity('IfcCurveBoundedPlane', 

957 OuterBoundary=sore.OuterBoundary, 

958 BasisSurface=sore.BasisSurface) 

959 temp_sore.InnerBoundaries = () 

960 shape = ifcopenshell.geom.create_shape(settings, temp_sore) 

961 except: 

962 poly = self.ifc.ConnectionGeometry.SurfaceOnRelatingElement.OuterBoundary.Points 

963 pnts = [] 

964 for p in poly: 

965 p.Coordinates = (p.Coordinates[0], p.Coordinates[1], 0.0) 

966 pnts.append((p.Coordinates[:])) 

967 shape = PyOCCTools.make_faces_from_pnts(pnts) 

968 shape = BRepLib_FuseEdges(shape).Shape() 

969 

970 if conv_required: 

971 # scale newly created shape of space boundary to correct size 

972 conv_factor = (1 * length_unit).to( 

973 ureg.metre).m 

974 # shape scaling seems to be covered by ifcopenshell, obsolete 

975 # shape = PyOCCTools.scale_shape(shape, conv_factor, gp_Pnt(0, 0, 

976 # 0)) 

977 

978 if self.ifc.RelatingSpace.ObjectPlacement: 

979 lp = PyOCCTools.local_placement( 

980 self.ifc.RelatingSpace.ObjectPlacement).tolist() 

981 # transform newly created shape of space boundary to correct 

982 # position if a unit conversion is required. 

983 if conv_required: 

984 for i in range(len(lp)): 

985 for j in range(len(lp[i])): 

986 coord = lp[i][j] * length_unit 

987 lp[i][j] = coord.to(ureg.meter).m 

988 mat = gp_Mat(lp[0][0], lp[0][1], lp[0][2], lp[1][0], lp[1][1], 

989 lp[1][2], lp[2][0], lp[2][1], lp[2][2]) 

990 vec = gp_Vec(lp[0][3], lp[1][3], lp[2][3]) 

991 trsf = gp_Trsf() 

992 trsf.SetTransformation(gp_Quaternion(mat), vec) 

993 shape = BRepBuilderAPI_Transform(shape, trsf).Shape() 

994 

995 # shape = shape.Reversed() 

996 unify = ShapeUpgrade_UnifySameDomain() 

997 unify.Initialize(shape) 

998 unify.Build() 

999 shape = unify.Shape() 

1000 

1001 if self.bound_element is not None: 

1002 bi = self.bound_element 

1003 if not hasattr(bi, "related_openings"): 

1004 return shape 

1005 if len(bi.related_openings) == 0: 

1006 return shape 

1007 shape = PyOCCTools.get_face_from_shape(shape) 

1008 return shape 

1009 

1010 def get_level_description(self, name) -> str: 

1011 """ 

1012 This function returns the level description of the spaceboundary 

1013 """ 

1014 return self.ifc.Description 

1015 

1016 def _get_is_external(self, name) -> Union[None, bool]: 

1017 """ 

1018 This function returns True if the spaceboundary is external 

1019 """ 

1020 if self.ifc.InternalOrExternalBoundary is not None: 

1021 ifc_ext_internal = self.ifc.InternalOrExternalBoundary.lower() 

1022 if ifc_ext_internal == 'internal': 

1023 return False 

1024 elif 'external' in ifc_ext_internal: 

1025 return True 

1026 else: 

1027 return None 

1028 # return not self.ifc.InternalOrExternalBoundary.lower() == 'internal' 

1029 

1030 def _get_opening_area(self, name): 

1031 """ 

1032 This function returns the opening area of the spaceboundary 

1033 """ 

1034 if self.opening_bounds: 

1035 return sum(opening_boundary.bound_area for opening_boundary 

1036 in self.opening_bounds) 

1037 return 0 

1038 

1039 def _get_net_bound_area(self, name): 

1040 """ 

1041 This function returns the net bound area of the spaceboundary 

1042 """ 

1043 return self.bound_area - self.opening_area 

1044 

1045 is_external = attribute.Attribute( 

1046 description="True if the Space Boundary is external", 

1047 functions=[_get_is_external] 

1048 ) 

1049 

1050 bound_shape = attribute.Attribute( 

1051 description="Bound shape element of the SB.", 

1052 functions=[_get_bound_shape] 

1053 ) 

1054 

1055 top_bottom = attribute.Attribute( 

1056 description="Info if the SB is top " 

1057 "(ceiling etc.) or bottom (floor etc.).", 

1058 functions=[_get_top_bottom] 

1059 ) 

1060 

1061 bound_center = attribute.Attribute( 

1062 description="The center of the space boundary.", 

1063 functions=[_get_bound_center] 

1064 ) 

1065 

1066 related_bound = attribute.Attribute( 

1067 description="Related space boundary.", 

1068 functions=[_get_related_bound] 

1069 ) 

1070 

1071 physical = attribute.Attribute( 

1072 description="If the Space Boundary is physical or not.", 

1073 functions=[_get_is_physical] 

1074 ) 

1075 

1076 opening_area = attribute.Attribute( 

1077 description="Opening area of the Space Boundary.", 

1078 functions = [_get_opening_area] 

1079 ) 

1080 

1081 net_bound_area = attribute.Attribute( 

1082 description="Net bound area of the Space Boundary", 

1083 functions=[_get_net_bound_area] 

1084 ) 

1085 

1086 def _get_bound_normal(self, name): 

1087 """ 

1088 This function returns the normal vector of the spaceboundary 

1089 """ 

1090 return PyOCCTools.simple_face_normal(self.bound_shape) 

1091 

1092 bound_normal = attribute.Attribute( 

1093 description="Normal vector of the Space Boundary.", 

1094 functions=[_get_bound_normal] 

1095 ) 

1096 

1097 level_description = attribute.Attribute( 

1098 functions=[get_level_description], 

1099 # Todo this should be removed in near future. We should either  

1100 # find # a way to distinguish the level of SB by something 

1101 # different or should check this during the creation of SBs 

1102 # and throw an error if the level is not defined. 

1103 default='2a' 

1104 # HACK: Rou's Model has 2a boundaries but, the description is None, 

1105 # default set to 2a to temporary solve this problem 

1106 ) 

1107 

1108 internal_external_type = attribute.Attribute( 

1109 description="Defines, whether the Space Boundary is internal" 

1110 " (Internal), or external, i.e. adjacent to open space " 

1111 "(that can be an partially enclosed space, such as terrace" 

1112 " (External", 

1113 ifc_attr_name="InternalOrExternalBoundary" 

1114 ) 

1115 

1116 

1117class ExtSpatialSpaceBoundary(SpaceBoundary): 

1118 """describes all space boundaries related to an IfcExternalSpatialElement instead of an IfcSpace""" 

1119 pass 

1120 

1121 

1122class SpaceBoundary2B(SpaceBoundary): 

1123 """describes all newly created space boundaries of type 2b to fill gaps within spaces""" 

1124 

1125 def __init__(self, *args, elements=None, **kwargs): 

1126 super(SpaceBoundary2B, self).__init__(*args, elements=None, **kwargs) 

1127 self.ifc = ifcopenshell.create_entity('IfcRelSpaceBoundary') 

1128 self.guid = None 

1129 self.bound_shape = None 

1130 self.thermal_zones = [] 

1131 self.bound_element = None 

1132 self.physical = True 

1133 self.is_external = False 

1134 self.related_bound = None 

1135 self.related_adb_bound = None 

1136 self.level_description = '2b' 

1137 

1138 

1139class BPSProductWithLayers(BPSProduct): 

1140 ifc_types = {} 

1141 

1142 def __init__(self, *args, **kwargs): 

1143 """BPSProductWithLayers __init__ function. 

1144 

1145 Convention in bim2sim for layerset is layer 0 is inside, 

1146 layer n is outside. 

1147 """ 

1148 super().__init__(*args, **kwargs) 

1149 self.layerset = None 

1150 

1151 def get_u_value(self, name): 

1152 """wall get_u_value function""" 

1153 layers_r = 0 

1154 for layer in self.layerset.layers: 

1155 if layer.thickness: 

1156 if layer.material.thermal_conduc and \ 

1157 layer.material.thermal_conduc > 0: 

1158 layers_r += layer.thickness / layer.material.thermal_conduc 

1159 

1160 if layers_r > 0: 

1161 return 1 / layers_r 

1162 return None 

1163 

1164 def get_thickness_by_layers(self, name): 

1165 """calculate the total thickness of the product based on the thickness 

1166 of each layer.""" 

1167 thickness = 0 

1168 for layer in self.layerset.layers: 

1169 if layer.thickness: 

1170 thickness += layer.thickness 

1171 return thickness 

1172 

1173 

1174class Wall(BPSProductWithLayers): 

1175 """Abstract wall class, only its subclasses Inner- and Outerwalls are used. 

1176 

1177 Every element where self.is_external is not True, is an InnerWall. 

1178 """ 

1179 ifc_types = { 

1180 "IfcWall": 

1181 ['*', 'MOVABLE', 'PARAPET', 'PARTITIONING', 'PLUMBINGWALL', 

1182 'SHEAR', 'SOLIDWALL', 'POLYGONAL', 'DOOR', 'GATE', 'TRAPDOOR'], 

1183 "IfcWallStandardCase": 

1184 ['*', 'MOVABLE', 'PARAPET', 'PARTITIONING', 'PLUMBINGWALL', 

1185 'SHEAR', 'SOLIDWALL', 'POLYGONAL', 'DOOR', 'GATE', 'TRAPDOOR'], 

1186 # "IfcElementedCase": "?" # TODO 

1187 } 

1188 

1189 conditions = [ 

1190 condition.RangeCondition('u_value', 

1191 0 * ureg.W / ureg.K / ureg.meter ** 2, 

1192 5 * ureg.W / ureg.K / ureg.meter ** 2, 

1193 critical_for_creation=False), 

1194 condition.UValueCondition('u_value', 

1195 threshold=0.2, 

1196 critical_for_creation=False), 

1197 ] 

1198 

1199 pattern_ifc_type = [ 

1200 re.compile('Wall', flags=re.IGNORECASE), 

1201 re.compile('Wand', flags=re.IGNORECASE) 

1202 ] 

1203 

1204 def __init__(self, *args, **kwargs): 

1205 """wall __init__ function""" 

1206 super().__init__(*args, **kwargs) 

1207 

1208 def get_better_subclass(self): 

1209 return OuterWall if self.is_external else InnerWall 

1210 

1211 net_area = attribute.Attribute( 

1212 default_ps=("Qto_WallBaseQuantities", "NetSideArea"), 

1213 functions=[BPSProduct.get_net_bound_area], 

1214 unit=ureg.meter ** 2 

1215 ) 

1216 

1217 gross_area = attribute.Attribute( 

1218 default_ps=("Qto_WallBaseQuantities", "GrossSideArea"), 

1219 functions=[BPSProduct.get_bound_area], 

1220 unit=ureg.meter ** 2 

1221 ) 

1222 

1223 tilt = attribute.Attribute( 

1224 default=90 

1225 ) 

1226 

1227 u_value = attribute.Attribute( 

1228 default_ps=("Pset_WallCommon", "ThermalTransmittance"), 

1229 unit=ureg.W / ureg.K / ureg.meter ** 2, 

1230 functions=[BPSProductWithLayers.get_u_value], 

1231 ) 

1232 

1233 width = attribute.Attribute( 

1234 default_ps=("Qto_WallBaseQuantities", "Width"), 

1235 functions=[BPSProductWithLayers.get_thickness_by_layers], 

1236 unit=ureg.m 

1237 ) 

1238 

1239 inner_convection = attribute.Attribute( 

1240 unit=ureg.W / ureg.K / ureg.meter ** 2, 

1241 default=0.6 

1242 ) 

1243 

1244 is_load_bearing = attribute.Attribute( 

1245 default_ps=("Pset_WallCommon", "LoadBearing"), 

1246 ) 

1247 

1248 net_volume = attribute.Attribute( 

1249 default_ps=("Qto_WallBaseQuantities", "NetVolume"), 

1250 unit=ureg.meter ** 3 

1251 ) 

1252 

1253 gross_volume = attribute.Attribute( 

1254 default_ps=("Qto_WallBaseQuantities", "GrossVolume") 

1255 ) 

1256 

1257 

1258class Layer(BPSProduct): 

1259 """Represents the IfcMaterialLayer class.""" 

1260 ifc_types = { 

1261 "IfcMaterialLayer": ["*"], 

1262 } 

1263 guid_prefix = "Layer_" 

1264 

1265 conditions = [ 

1266 condition.RangeCondition('thickness', 

1267 0 * ureg.m, 

1268 10 * ureg.m, 

1269 critical_for_creation=False, incl_edges=False) 

1270 ] 

1271 

1272 def __init__(self, *args, **kwargs): 

1273 """layer __init__ function""" 

1274 super().__init__(*args, **kwargs) 

1275 self.to_layerset: List[LayerSet] = [] 

1276 self.parent = None 

1277 self.material = None 

1278 

1279 @staticmethod 

1280 def get_id(prefix=""): 

1281 prefix_length = len(prefix) 

1282 if prefix_length > 10: 

1283 raise AttributeError("Max prefix length is 10!") 

1284 ifcopenshell_guid = guid.new()[prefix_length + 1:] 

1285 return f"{prefix}{ifcopenshell_guid}" 

1286 

1287 @classmethod 

1288 def pre_validate(cls, ifc) -> bool: 

1289 return True 

1290 

1291 def validate_creation(self) -> bool: 

1292 return True 

1293 

1294 def _get_thickness(self, name): 

1295 """layer thickness function""" 

1296 if hasattr(self.ifc, 'LayerThickness'): 

1297 return self.ifc.LayerThickness * ureg.meter 

1298 else: 

1299 return float('nan') * ureg.meter 

1300 

1301 thickness = attribute.Attribute( 

1302 unit=ureg.m, 

1303 functions=[_get_thickness] 

1304 ) 

1305 

1306 is_ventilated = attribute.Attribute( 

1307 description="Indication of whether the material layer represents an " 

1308 "air layer (or cavity).", 

1309 ifc_attr_name="IsVentilated", 

1310 ) 

1311 

1312 description = attribute.Attribute( 

1313 description="Definition of the material layer in more descriptive " 

1314 "terms than given by attributes Name or Category.", 

1315 ifc_attr_name="Description", 

1316 ) 

1317 

1318 category = attribute.Attribute( 

1319 description="Category of the material layer, e.g. the role it has in" 

1320 " the layer set it belongs to (such as 'load bearing', " 

1321 "'thermal insulation' etc.). The list of keywords might be" 

1322 " extended by model view definitions, however the " 

1323 "following keywords shall apply in general:", 

1324 ifc_attr_name="Category", 

1325 ) 

1326 

1327 def __repr__(self): 

1328 return "<%s (material: %s>" \ 

1329 % (self.__class__.__name__, self.material) 

1330 

1331 

1332class LayerSet(BPSProduct): 

1333 """Represents a Layerset in bim2sim. 

1334 

1335 Convention in bim2sim for layerset is layer 0 is inside, 

1336 layer n is outside. 

1337 

1338 # TODO: when not enriching we currently don't check layer orientation. 

1339 """ 

1340 

1341 ifc_types = { 

1342 "IfcMaterialLayerSet": ["*"], 

1343 } 

1344 

1345 guid_prefix = "LayerSet_" 

1346 conditions = [ 

1347 condition.ListCondition('layers', 

1348 critical_for_creation=False), 

1349 condition.ThicknessCondition('total_thickness', 

1350 threshold=0.2, 

1351 critical_for_creation=False), 

1352 ] 

1353 

1354 def __init__(self, *args, **kwargs): 

1355 """layerset __init__ function""" 

1356 super().__init__(*args, **kwargs) 

1357 self.parents: List[BPSProductWithLayers] = [] 

1358 self.layers: List[Layer] = [] 

1359 

1360 @staticmethod 

1361 def get_id(prefix=""): 

1362 prefix_length = len(prefix) 

1363 if prefix_length > 10: 

1364 raise AttributeError("Max prefix length is 10!") 

1365 ifcopenshell_guid = guid.new()[prefix_length + 1:] 

1366 return f"{prefix}{ifcopenshell_guid}" 

1367 

1368 def get_total_thickness(self, name): 

1369 if hasattr(self.ifc, 'TotalThickness'): 

1370 if self.ifc.TotalThickness: 

1371 return self.ifc.TotalThickness * ureg.m 

1372 return sum(layer.thickness for layer in self.layers) 

1373 

1374 def _get_volume(self, name): 

1375 if hasattr(self, "net_volume"): 

1376 if self.net_volume: 

1377 vol = self.net_volume 

1378 return vol 

1379 # TODO This is not working currently, because with multiple parents 

1380 # we dont know the area or width of the parent 

1381 # elif self.parent.width: 

1382 # vol = self.parent.volume * self.parent.width / self.thickness 

1383 else: 

1384 vol = float('nan') * ureg.meter ** 3 

1385 # TODO see above 

1386 # elif self.parent.width: 

1387 # vol = self.parent.volume * self.parent.width / self.thickness 

1388 else: 

1389 vol = float('nan') * ureg.meter ** 3 

1390 return vol 

1391 

1392 thickness = attribute.Attribute( 

1393 unit=ureg.m, 

1394 functions=[get_total_thickness], 

1395 ) 

1396 

1397 name = attribute.Attribute( 

1398 description="The name by which the IfcMaterialLayerSet is known.", 

1399 ifc_attr_name="LayerSetName", 

1400 ) 

1401 

1402 volume = attribute.Attribute( 

1403 description="Volume of layer set", 

1404 functions=[_get_volume], 

1405 ) 

1406 

1407 def __repr__(self): 

1408 if self.name: 

1409 return "<%s (name: %s, layers: %d)>" \ 

1410 % (self.__class__.__name__, self.name, len(self.layers)) 

1411 else: 

1412 return "<%s (layers: %d)>" % (self.__class__.__name__, len(self.layers)) 

1413 

1414 

1415class OuterWall(Wall): 

1416 ifc_types = {} 

1417 

1418 def calc_cost_group(self) -> int: 

1419 """Calc cost group for OuterWall 

1420 

1421 Load bearing outer walls: 331 

1422 Not load bearing outer walls: 332 

1423 Rest: 330 

1424 """ 

1425 

1426 if self.is_load_bearing: 

1427 return 331 

1428 elif not self.is_load_bearing: 

1429 return 332 

1430 else: 

1431 return 330 

1432 

1433 

1434class InnerWall(Wall): 

1435 """InnerWalls are assumed to be always symmetric.""" 

1436 ifc_types = {} 

1437 

1438 def calc_cost_group(self) -> int: 

1439 """Calc cost group for InnerWall 

1440 

1441 Load bearing inner walls: 341 

1442 Not load bearing inner walls: 342 

1443 Rest: 340 

1444 """ 

1445 

1446 if self.is_load_bearing: 

1447 return 341 

1448 elif not self.is_load_bearing: 

1449 return 342 

1450 else: 

1451 return 340 

1452 

1453 

1454class Window(BPSProductWithLayers): 

1455 ifc_types = {"IfcWindow": ['*', 'WINDOW', 'SKYLIGHT', 'LIGHTDOME']} 

1456 

1457 pattern_ifc_type = [ 

1458 re.compile('Window', flags=re.IGNORECASE), 

1459 re.compile('Fenster', flags=re.IGNORECASE) 

1460 ] 

1461 

1462 def get_glazing_area(self, name): 

1463 """returns only the glazing area of the windows""" 

1464 if self.glazing_ratio: 

1465 return self.gross_area * self.glazing_ratio 

1466 return self.opening_area 

1467 

1468 def calc_cost_group(self) -> int: 

1469 """Calc cost group for Windows 

1470 

1471 Outer door: 334 

1472 """ 

1473 

1474 return 334 

1475 

1476 net_area = attribute.Attribute( 

1477 functions=[get_glazing_area], 

1478 unit=ureg.meter ** 2, 

1479 ) 

1480 

1481 gross_area = attribute.Attribute( 

1482 default_ps=("Qto_WindowBaseQuantities", "Area"), 

1483 functions=[BPSProduct.get_bound_area], 

1484 unit=ureg.meter ** 2 

1485 ) 

1486 

1487 glazing_ratio = attribute.Attribute( 

1488 default_ps=("Pset_WindowCommon", "GlazingAreaFraction"), 

1489 ) 

1490 

1491 width = attribute.Attribute( 

1492 default_ps=("Qto_WindowBaseQuantities", "Depth"), 

1493 functions=[BPSProductWithLayers.get_thickness_by_layers], 

1494 unit=ureg.m 

1495 ) 

1496 u_value = attribute.Attribute( 

1497 default_ps=("Pset_WindowCommon", "ThermalTransmittance"), 

1498 unit=ureg.W / ureg.K / ureg.meter ** 2, 

1499 functions=[BPSProductWithLayers.get_u_value], 

1500 ) 

1501 

1502 g_value = attribute.Attribute( # material 

1503 ) 

1504 

1505 a_conv = attribute.Attribute( 

1506 ) 

1507 

1508 shading_g_total = attribute.Attribute( 

1509 ) 

1510 

1511 shading_max_irr = attribute.Attribute( 

1512 ) 

1513 

1514 inner_convection = attribute.Attribute( 

1515 unit=ureg.W / ureg.K / ureg.meter ** 2, 

1516 ) 

1517 

1518 inner_radiation = attribute.Attribute( 

1519 unit=ureg.W / ureg.K / ureg.meter ** 2, 

1520 ) 

1521 

1522 outer_radiation = attribute.Attribute( 

1523 unit=ureg.W / ureg.K / ureg.meter ** 2, 

1524 ) 

1525 

1526 outer_convection = attribute.Attribute( 

1527 unit=ureg.W / ureg.K / ureg.meter ** 2, 

1528 ) 

1529 

1530 

1531class Door(BPSProductWithLayers): 

1532 ifc_types = {"IfcDoor": ['*', 'DOOR', 'GATE', 'TRAPDOOR']} 

1533 

1534 pattern_ifc_type = [ 

1535 re.compile('Door', flags=re.IGNORECASE), 

1536 re.compile('Tuer', flags=re.IGNORECASE) 

1537 ] 

1538 

1539 conditions = [ 

1540 condition.RangeCondition('glazing_ratio', 

1541 0 * ureg.dimensionless, 

1542 1 * ureg.dimensionless, True, 

1543 critical_for_creation=False), 

1544 ] 

1545 

1546 def get_better_subclass(self): 

1547 return OuterDoor if self.is_external else InnerDoor 

1548 

1549 def get_net_area(self, name): 

1550 if self.glazing_ratio: 

1551 return self.gross_area * (1 - self.glazing_ratio) 

1552 return self.gross_area - self.opening_area 

1553 

1554 net_area = attribute.Attribute( 

1555 functions=[get_net_area, ], 

1556 unit=ureg.meter ** 2, 

1557 ) 

1558 

1559 gross_area = attribute.Attribute( 

1560 default_ps=("Qto_DoorBaseQuantities", "Area"), 

1561 functions=[BPSProduct.get_bound_area], 

1562 unit=ureg.meter ** 2 

1563 ) 

1564 

1565 glazing_ratio = attribute.Attribute( 

1566 default_ps=("Pset_DoorCommon", "GlazingAreaFraction"), 

1567 ) 

1568 

1569 width = attribute.Attribute( 

1570 default_ps=("Qto_DoorBaseQuantities", "Width"), 

1571 functions=[BPSProductWithLayers.get_thickness_by_layers], 

1572 unit=ureg.m 

1573 ) 

1574 

1575 u_value = attribute.Attribute( 

1576 unit=ureg.W / ureg.K / ureg.meter ** 2, 

1577 functions=[BPSProductWithLayers.get_u_value], 

1578 ) 

1579 

1580 inner_convection = attribute.Attribute( 

1581 unit=ureg.W / ureg.K / ureg.meter ** 2, 

1582 default=0.6 

1583 ) 

1584 

1585 inner_radiation = attribute.Attribute( 

1586 unit=ureg.W / ureg.K / ureg.meter ** 2, 

1587 ) 

1588 

1589 outer_radiation = attribute.Attribute( 

1590 unit=ureg.W / ureg.K / ureg.meter ** 2, 

1591 ) 

1592 

1593 outer_convection = attribute.Attribute( 

1594 unit=ureg.W / ureg.K / ureg.meter ** 2, 

1595 ) 

1596 

1597 

1598class InnerDoor(Door): 

1599 ifc_types = {} 

1600 

1601 def calc_cost_group(self) -> int: 

1602 """Calc cost group for Innerdoors 

1603 

1604 Inner door: 344 

1605 """ 

1606 

1607 return 344 

1608 

1609 

1610class OuterDoor(Door): 

1611 ifc_types = {} 

1612 

1613 def calc_cost_group(self) -> int: 

1614 """Calc cost group for Outerdoors 

1615 

1616 Outer door: 334 

1617 """ 

1618 

1619 return 334 

1620 

1621 

1622class Slab(BPSProductWithLayers): 

1623 ifc_types = { 

1624 "IfcSlab": ['*', 'LANDING'] 

1625 } 

1626 

1627 def __init__(self, *args, **kwargs): 

1628 """slab __init__ function""" 

1629 super().__init__(*args, **kwargs) 

1630 

1631 def _calc_teaser_orientation(self, name) -> int: 

1632 """Returns the orientation of the slab in TEASER convention.""" 

1633 return -1 

1634 

1635 net_area = attribute.Attribute( 

1636 default_ps=("Qto_SlabBaseQuantities", "NetArea"), 

1637 functions=[BPSProduct.get_net_bound_area], 

1638 unit=ureg.meter ** 2 

1639 ) 

1640 

1641 gross_area = attribute.Attribute( 

1642 default_ps=("Qto_SlabBaseQuantities", "GrossArea"), 

1643 functions=[BPSProduct.get_bound_area], 

1644 unit=ureg.meter ** 2 

1645 ) 

1646 

1647 width = attribute.Attribute( 

1648 default_ps=("Qto_SlabBaseQuantities", "Width"), 

1649 functions=[BPSProductWithLayers.get_thickness_by_layers], 

1650 unit=ureg.m 

1651 ) 

1652 

1653 u_value = attribute.Attribute( 

1654 default_ps=("Pset_SlabCommon", "ThermalTransmittance"), 

1655 unit=ureg.W / ureg.K / ureg.meter ** 2, 

1656 functions=[BPSProductWithLayers.get_u_value], 

1657 ) 

1658 

1659 net_volume = attribute.Attribute( 

1660 default_ps=("Qto_SlabBaseQuantities", "NetVolume"), 

1661 unit=ureg.meter ** 3 

1662 ) 

1663 

1664 is_load_bearing = attribute.Attribute( 

1665 default_ps=("Pset_SlabCommon", "LoadBearing"), 

1666 ) 

1667 

1668 

1669class Roof(Slab): 

1670 # todo decomposed roofs dont have materials, layers etc. because these 

1671 # information are stored in the slab itself and not the decomposition 

1672 # is_external = True 

1673 ifc_types = { 

1674 "IfcRoof": 

1675 ['*', 'FLAT_ROOF', 'SHED_ROOF', 'GABLE_ROOF', 'HIP_ROOF', 

1676 'HIPPED_GABLE_ROOF', 'GAMBREL_ROOF', 'MANSARD_ROOF', 

1677 'BARREL_ROOF', 'RAINBOW_ROOF', 'BUTTERFLY_ROOF', 'PAVILION_ROOF', 

1678 'DOME_ROOF', 'FREEFORM'], 

1679 "IfcSlab": ['ROOF'] 

1680 } 

1681 

1682 def calc_cost_group(self) -> int: 

1683 """Calc cost group for Roofs 

1684 

1685 

1686 Load bearing: 361 

1687 Not load bearing: 363 

1688 """ 

1689 if self.is_load_bearing: 

1690 return 361 

1691 elif not self.is_load_bearing: 

1692 return 363 

1693 else: 

1694 return 300 

1695 

1696 

1697class InnerFloor(Slab): 

1698 """In bim2sim we handle all inner slabs as floors/inner floors. 

1699 

1700 Orientation of layerset is layer 0 is inside (floor surface of this room), 

1701 layer n is outside (ceiling surface of room below). 

1702 """ 

1703 ifc_types = { 

1704 "IfcSlab": ['FLOOR'] 

1705 } 

1706 

1707 def calc_cost_group(self) -> int: 

1708 """Calc cost group for Floors 

1709 

1710 Floor: 351 

1711 """ 

1712 return 351 

1713 

1714 

1715class GroundFloor(Slab): 

1716 # is_external = True # todo to be removed 

1717 ifc_types = { 

1718 "IfcSlab": ['BASESLAB'] 

1719 } 

1720 

1721 def _calc_teaser_orientation(self, name) -> int: 

1722 """Returns the orientation of the groundfloor in TEASER convention.""" 

1723 return -2 

1724 

1725 def calc_cost_group(self) -> int: 

1726 """Calc cost group for groundfloors 

1727 

1728 groundfloors: 322 

1729 """ 

1730 

1731 return 322 

1732 

1733 

1734 # pattern_ifc_type = [ 

1735 # re.compile('Bodenplatte', flags=re.IGNORECASE), 

1736 # re.compile('') 

1737 # ] 

1738 

1739 

1740class Site(BPSProduct): 

1741 def __init__(self, *args, **kwargs): 

1742 super().__init__(*args, **kwargs) 

1743 del self.building 

1744 self.buildings = [] 

1745 

1746 # todo move this to base elements as this relevant for other domains as well 

1747 ifc_types = {"IfcSite": ['*']} 

1748 

1749 gross_area = attribute.Attribute( 

1750 default_ps=("Qto_SiteBaseQuantities", "GrossArea"), 

1751 unit=ureg.meter ** 2 

1752 ) 

1753 

1754 location_latitude = attribute.Attribute( 

1755 ifc_attr_name="RefLatitude", 

1756 ) 

1757 

1758 location_longitude = attribute.Attribute( 

1759 ifc_attr_name="RefLongitude" 

1760 ) 

1761 

1762 

1763class Building(BPSProduct): 

1764 def __init__(self, *args, **kwargs): 

1765 super().__init__(*args, **kwargs) 

1766 self.thermal_zones = [] 

1767 self.storeys = [] 

1768 self.elements = [] 

1769 

1770 ifc_types = {"IfcBuilding": ['*']} 

1771 from_ifc_domains = [IFCDomain.arch] 

1772 

1773 conditions = [ 

1774 condition.RangeCondition('year_of_construction', 

1775 1900 * ureg.year, 

1776 date.today().year * ureg.year, 

1777 critical_for_creation=False), 

1778 ] 

1779 

1780 def _get_building_name(self, name): 

1781 """get building name""" 

1782 bldg_name = self.get_ifc_attribute('Name') 

1783 if bldg_name: 

1784 return bldg_name 

1785 else: 

1786 # todo needs to be adjusted for multiple buildings #165 

1787 bldg_name = 'Building' 

1788 return bldg_name 

1789 

1790 def _get_number_of_storeys(self, name): 

1791 return len(self.storeys) 

1792 

1793 def _get_avg_storey_height(self, name): 

1794 """Calculates the average height of all storeys.""" 

1795 storey_height_sum = 0 

1796 avg_height = None 

1797 if hasattr(self, "storeys"): 

1798 if len(self.storeys) > 0: 

1799 for storey in self.storeys: 

1800 if storey.height: 

1801 height = storey.height 

1802 elif storey.gross_height: 

1803 height = storey.gross_height 

1804 elif storey.net_height: 

1805 height = storey.net_height 

1806 else: 

1807 height = None 

1808 if height: 

1809 storey_height_sum += height 

1810 avg_height = storey_height_sum / len(self.storeys) 

1811 return avg_height 

1812 

1813 def _check_tz_ahu(self, name): 

1814 """Check if any TZs have AHU, then the building has one as well.""" 

1815 with_ahu = False 

1816 for tz in self.thermal_zones: 

1817 if tz.with_ahu: 

1818 with_ahu = True 

1819 break 

1820 return with_ahu 

1821 

1822 bldg_name = attribute.Attribute( 

1823 functions=[_get_building_name], 

1824 ) 

1825 

1826 year_of_construction = attribute.Attribute( 

1827 default_ps=("Pset_BuildingCommon", "YearOfConstruction"), 

1828 unit=ureg.year 

1829 ) 

1830 

1831 gross_area = attribute.Attribute( 

1832 default_ps=("Qto_BuildingBaseQuantities", "GrossFloorArea"), 

1833 unit=ureg.meter ** 2 

1834 ) 

1835 

1836 net_area = attribute.Attribute( 

1837 default_ps=("Qto_BuildingBaseQuantities", "NetFloorArea"), 

1838 unit=ureg.meter ** 2 

1839 ) 

1840 

1841 number_of_storeys = attribute.Attribute( 

1842 unit=ureg.dimensionless, 

1843 functions=[_get_number_of_storeys] 

1844 ) 

1845 

1846 occupancy_type = attribute.Attribute( 

1847 default_ps=("Pset_BuildingCommon", "OccupancyType"), 

1848 ) 

1849 

1850 avg_storey_height = attribute.Attribute( 

1851 unit=ureg.meter, 

1852 functions=[_get_avg_storey_height] 

1853 ) 

1854 

1855 with_ahu = attribute.Attribute( 

1856 functions=[_check_tz_ahu] 

1857 ) 

1858 

1859 ahu_heating = attribute.Attribute( 

1860 attr_type=bool 

1861 ) 

1862 

1863 ahu_cooling = attribute.Attribute( 

1864 attr_type=bool 

1865 ) 

1866 

1867 ahu_dehumidification = attribute.Attribute( 

1868 attr_type=bool 

1869 ) 

1870 

1871 ahu_humidification = attribute.Attribute( 

1872 attr_type=bool 

1873 ) 

1874 

1875 ahu_heat_recovery = attribute.Attribute( 

1876 attr_type=bool 

1877 ) 

1878 

1879 ahu_heat_recovery_efficiency = attribute.Attribute( 

1880 ) 

1881 

1882 

1883class Storey(BPSProduct): 

1884 ifc_types = {'IfcBuildingStorey': ['*']} 

1885 from_ifc_domains = [IFCDomain.arch] 

1886 

1887 def __init__(self, *args, **kwargs): 

1888 """storey __init__ function""" 

1889 super().__init__(*args, **kwargs) 

1890 self.elements = [] 

1891 

1892 spec_machines_internal_load = attribute.Attribute( 

1893 default_ps=("Pset_ThermalLoadDesignCriteria", 

1894 "ReceptacleLoadIntensity"), 

1895 unit=ureg.kilowatt / (ureg.meter ** 2) 

1896 ) 

1897 

1898 spec_lighting_internal_load = attribute.Attribute( 

1899 default_ps=("Pset_ThermalLoadDesignCriteria", "LightingLoadIntensity"), 

1900 unit=ureg.kilowatt / (ureg.meter ** 2) 

1901 ) 

1902 

1903 cooling_load = attribute.Attribute( 

1904 default_ps=("Pset_ThermalLoadAggregate", "TotalCoolingLoad"), 

1905 unit=ureg.kilowatt 

1906 ) 

1907 

1908 heating_load = attribute.Attribute( 

1909 default_ps=("Pset_ThermalLoadAggregate", "TotalHeatingLoad"), 

1910 unit=ureg.kilowatt 

1911 ) 

1912 

1913 air_per_person = attribute.Attribute( 

1914 default_ps=("Pset_ThermalLoadDesignCriteria", "OutsideAirPerPerson"), 

1915 unit=ureg.meter ** 3 / ureg.hour 

1916 ) 

1917 

1918 percent_load_to_radiant = attribute.Attribute( 

1919 default_ps=("Pset_ThermalLoadDesignCriteria", 

1920 "AppliancePercentLoadToRadiant"), 

1921 unit=ureg.percent 

1922 ) 

1923 

1924 gross_floor_area = attribute.Attribute( 

1925 default_ps=("Qto_BuildingStoreyBaseQuantities", "GrossFloorArea"), 

1926 unit=ureg.meter ** 2 

1927 ) 

1928 

1929 # todo make the lookup for height hierarchical 

1930 net_height = attribute.Attribute( 

1931 default_ps=("Qto_BuildingStoreyBaseQuantities", "NetHeight"), 

1932 unit=ureg.meter 

1933 ) 

1934 

1935 gross_height = attribute.Attribute( 

1936 default_ps=("Qto_BuildingStoreyBaseQuantities", "GrossHeight"), 

1937 unit=ureg.meter 

1938 ) 

1939 

1940 height = attribute.Attribute( 

1941 default_ps=("Qto_BuildingStoreyBaseQuantities", "Height"), 

1942 unit=ureg.meter 

1943 ) 

1944 

1945 

1946# collect all domain classes 

1947items: Set[BPSProduct] = set() 

1948for name, cls in inspect.getmembers( 

1949 sys.modules[__name__], 

1950 lambda member: inspect.isclass(member) # class at all 

1951 and issubclass(member, BPSProduct) # domain subclass 

1952 and member is not BPSProduct # but not base class 

1953 and member.__module__ == __name__): # declared here 

1954 items.add(cls)